Researchers in Florida have accomplished converting umbilical cord stem cells into other cell types. According to University of Central Florida bioengineer James Hickman, it’s the first time that non-embryonic cells have accomplished this feat. His research group published this work in the January 18th issue of ACS Chemical Neuroscience.
Two major benefits of umbilical cord-derived stem cells are that they have not been shown to cause adverse immune system reactions and they pose no ethical issues since they come from a source that would be naturally discarded anyway.
Hedvika Davis, a post-doc researcher and lead author of the paper, had to search for the right chemical to coax the stem cells into becoming oligodendrocytes, which are cells that insulate nerves residing in the brain and spinal cord.
Other researchers had already shown that oligodendrocytes bind with a hormone called norepinephrine and Davis theorized that this could be the key. So she used norepinephrine and other growth factors to induce the cells to differentiate into oligodendrocytes. The only problem was that the cells were not sufficiently developed as they would be in the body.
So Davis devised a novel approach of approximating the body’s environment in the lab. By growing the cells on top of a slide, with another slide on top, Davis was able to simulate a 3-dimensional environment and grow mature oligodendrocytes.
Because oligodendrocytes produce myelin, researcher believe that this discovery might lead to treatments for multiple sclerosis, spinal cord injury and diabetic neuropathy.